

SL7 GNSS RTK System User Manual

Manual Revision

SatLab GEOSOLUTIONS AB

Revision Date	Revision Level	Description
June 2023	1	SL7 GNSS RTK System User Manual

SL7

GNSS RTK System

User Manual

Preface

Introduction

Welcome to the SatLab SL7 receiver. This introduction describes how to use this product.

Experience requirement

To help you use the SatLab products better, SatLab suggests that you read the instructions carefully. If you are unfamiliar with the products, please refer to https://www.satlab.com.se/

Tips for safe use

Notice: These are special operations and need your special attention. Please read them carefully.

Warning: The contents here are very important as the wrong operation may damage the machine. This can lead to the loss of data, or break the system and endanger your safety.

Exclusions

Before using the product, please read these operating instructions carefully, as they will help you to use it better. GeoSolution i Göteborg AB assumes no responsibility if you fail to operate the product according to the instructions or operate it wrongly because you have misunderstood them.

SatLab is committed to constantly perfecting the product's functions and performance, improving its service quality and reserves the right to change these operating instructions without notice.

We have checked the contents of the instructions and software and hardware but please note the possibility of deviation. The pictures in the operating instructions are for reference only and the actual products may vary from them.

Technology and service

If you have any technical issues, please call the SatLab technology department for help, and we will answer your question.

Relevant information

You can obtain this introduction by:

Purchasing SatLab products: this manual is found in the instrument container and will help you to operate the instrument.

Logging on to the SatLab official website and downloading the electronic version of this introduction from Partner Center: http://members.SatLab.com.cn/

Advice

If you have any suggestions for this product, please email us: sales@SatLab.com.cn. Your feedback information will help us to improve our product and service.

Contents

Preface	
Introduction	
Experience requirement	
Tips for safe use	
Technology and service	
Relevant information	5
Advice	5
Contents	6
Chapter 1	
Overview	
1.1 Foreword	9
1.2 Features	9
1.3 Use and precautions	
Chapter 2	
Product introduction	
2.1 Overall appearance	
2.1.1 Upper cover	
2.1.2 Bottom cover	
2.1.3 Control cover	
2.2 Button & LED	14
2.2.1 Button function	14
2.2.2 LED	14
2.3 WEB management system	
2.3.1 Main menu	
2.3.2 Information	
2.3.3 Work mode	
2.3.4 File manager	21
2.3.5 Firmware	
2.3.6 System	
2.3.7 Coordinate System	
2.4 Static survey	
2.4.1 Static settings	

2.4.2 Static data collection steps	27
2.4.3 Static Data Download	27
2.5 Tilt Survey	
2.5.1 Calibration-free Tilt Survey	
2.6 Firmware Upgrade	
2.6.1 Upgrade by USB Cable	
2.6.2 Upgrade by Using the Web Management System	
2.7 AR Stake	
2.7.1 AR Stake Instructions	
Chapter 3	
Technical Specification	
3.1 Technical Parameters	
Chapter 4	
Accessories and Interface	
4.1 Data cable	
4.2 Antenna	
4.3 Battery & charger	

Overview

This chapter contains:

- Foreword
- Features
- Use and precautions

1.1 Foreword

SL7 GNSS receiver brings superior performance and high efficiency that will support your fieldwork with reliable solutions. Equipped with an upgraded high-definition starlight camera, SL7 brings out an excellent visual stakeout experience in low-light conditions. The compact and lightweight design makes SL7 a feasible and portable choice for engineering personnel in collecting data and improving positional accuracy.

1.2 Features

1. With an ultra-light EPP material instrument case it is more durable and portable.

2. A lower camera is used for AR stakeout with an accuracy of better than 1 cm.

3. The inclusion of a high-performance patch antenna both enhances the low elevation angle tracking capabilities and maintains a high gain for higher elevation satellites.

4. It can bring accurate and reliable results and boost efficient fieldwork with a self-developed built-in IMU and core algorithm.

5. Hi-Fix technology enables both continuous connectivity and quality results as a certain level of accuracy continues to be guaranteed even in the absence of differentials.

1.3 Use and precautions

The SL7 receiver is designed to be resistant to both chemicals and impact, but precision instruments require careful use and maintenance and care should be taken.

Notice:

This equipment complies with radiation exposure limits set forth for a controlled environment. This equipment should be installed and operated with a minimum distance of 1m between the radiator and your body. This transmitter must not be co-located or operated in conjunction with any other antenna or transmitter.

We recommend that a distance of 0.31m or more be maintained between this device and people during operation. Operations closer than this distance is not recommended.

The product shall not be permanently installed outdoors because protection against water and dust is not guaranteed Please bring back to indoors in rainy weather.

This device needs a license from the national regulatory authority before use.

The receiver must be within the specified temperature range when it is used and stored. For detailed requirements, please refer to Chapter 3: Technical specification.

Notice: This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) this device may not cause harmful interference.

(2) this device must accept any interference received, including interference that may cause undesired operation.

To ensure the continuous tracking observation of the satellite and quality of the satellite signal, the space above the station should be as wide as possible, with no obstacles above the 15° elevation angle. To reduce the interference of various electromagnetic waves on the GNSS satellite signal, there should be no strong electromagnetic interference within a range of about 200 meters around the station, such as TV towers, microwave stations, and high-voltage transmission lines. To avoid or reduce the occurrence of multipath effects, the station should be away from terrain and features with strong reflectors, such as high-rise buildings, water, etc.

Chapter 2

Product introduction

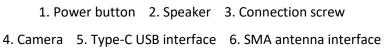
This chapter contains:

- Overall appearance
- Button & LED
- WEB management system
- Static survey
- Tilt survey
- Firmware upgrade
- AR Stake

2.1 Overall appearance

The product's appearance is divided into three parts: the upper cover, bottom cover and control panel.

2.1.1 Upper cover


2.1.2 Bottom cover

The bottom cover includes the SMA antenna interface and Type-C USB interface.

♦ Type-C USB interface: to upgrade the firmware and download static data.

 \diamond SMA antenna interface: connect the radio antenna while using the Internal UHF mode.

 \diamond Protective plug: used for dustproof and waterproof sockets.

Notice:

1. If you don't use the SMA antenna interface and USB interface, please cover the rubber plug to


protect them from dust and water.

2. When the speaker is flooded, the sound may be silent or hoarse, but it will return to normal after it has dried.

2.1.3 Control cover

The control panel includes a satellite light, power button and data light.

2.2 Button & LED

2.2.1 Button function

Table 2-2-1 Button function description

Function	Description	
Power-on	Press and hold the power button for 1 second.	
Power-off	Press and hold the power button for more than 3 seconds but less than 6 seconds.	
Forced shutdown (use when the device crashes)	Press and hold the power button for at least 12 seconds.	
Query current status	Press the power button once to receive the product's current working status.	
Reset motherboard	When the device is powered on, press and hold the power button for 6 seconds and release it after hearing a second "dingdong" sound.	
Switch working mode	Double-click the power button to change the mode. Each double-click switches to a different working mode, and click the power button to confirm the one you want.	

2.2.2 LED

Table 2-2-2 LED function description

Function	Status	Description
Power LED(red)	Long-term light out	In the non-charging state or after the power is full, the power red light is always off.
	Long-term lighting	In the charging state, and the power is not fully charged, the power red light is always on.
Bower LED(green)	Flash	The power is ≤10%.
Power LED(green)	Long-term lighting	 RTK mode: no correction data. Static mode: sampling has not started.
	Flash	 RTK mode: flashes at the frequency of the correction transmit and reception. Static mode: Sampling interval >1s: flashes at the sampling interval. Sampling interval ≤1s: flashes once per second.

Function	Status	Description
Data LED	Off	 RTK mode: no correction data. Static mode: sampling has not started.
Satellite LED	Long-term lighting	The satellite is tracked.
	Flash	The satellite is not tracked.

2.3 WEB management system

SL7 has a built-in web management system that can be used to set the receiver's working mode, and data output, as well as view receiver information and satellite information. The receiver's Wi-Fi name is its S/N. You can connect it to a controller or phone (the default password is 12345678) inputting the IP address 192.168.20.1 into the browser to log in.

Note: The web management system can only be visited when the receiver's Bluetooth isn't connected.

2.3.1 Main menu

After logging into the web management system, you can click Start to enter the main menu. Each option of the main menu contains drop-down menus.



Figure 2-3-1 Home

```
Figure 2-3-2 Main menu
```


10:55	政 🧟 🕯 65%
192.168.20.1/index_en.html	:
← sl.7	
(i) Information	~
Device Information	
O Position Information	
Base Information	
Skyplot	
Satellites List	
🛞 Work Mode	>
File Manager	>
Firmware	>
🚫 System	>
•	•

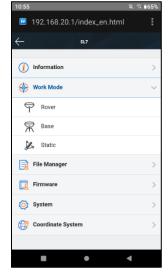


Figure 2-3-3 Information

10:55		发 🧟 🕯 65%
1	192.168.20.1/index_en.html	:
\leftarrow	SL7	
(i)	Information	>
<\>	Work Mode	>
	File Manager	\sim
	Static Data	
	Firmware	>
()	System	>
	Coordinate System	>
	•	•

Figure 2-3-4 Work mode

10:55	೩ ⊽∎65%
192.168.20.1/index_en.html	
← SL7	
(i) Information	>
🛞 Work Mode	>
🛃 File Manager	>
Firmware	\sim
() Upgrade	
C Restore	
🚫 System	>
Coordinate System	>
•	◀

Figure 2-3-6 Firmware

10:56	१ 🧟 🕯 65%
I92.168.20.1/index_en.html	:
(i) Information sL7	
🛞 Work Mode	>
📑 File Manager	>
Firmware	>
🚫 System	~
Constellation	
Radio	
2 Registration	
Reset	
Others	
Coordinate System	>

Figure 2-3-5 File manager

Figure 2-3-7 System

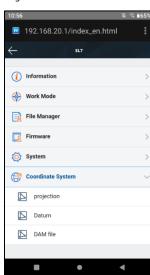


Figure 2-3-8 Coordinate System

Table 2-3-1 Menu description

Main menu	Sub-menu	Description
	Device info	Device model, version, registration info, etc.
Information	Position info	Coordinates, satellite tracking, solution state, etc.
	Sky plot	Check the sky plot
	Satellites list	Satellite tracking information
	Rover	Data link and parameter settings of the rover
Work Mode	Base	Data link and parameter settings of the base
	Static	Static measurement parameter settings
File Manager	Static data	Download, delete and format static data
Firmware	Upgrade	Select and upgrade the firmware
Filliwale	Restore	Restore the system
	Constellation	The switches of satellite tracking
	Radio	Radio frequency list
System	Registration	Device registration and information
	Reset	Reset the motherboard
	Others	Switch of the static RINEX and volume control, etc
	Projection	Modify projection model, central meridian, scale factor, etc.
Coordinate	Datum	Modify source ellipsoid, target ellipsoid and transformation
System	Datum	model
	DAM File	Export/import of coordinate system parameters in dam format

2.3.2 Information

1. Device information

This includes the main information about the device: device model, S/N, firmware version, OEM info, battery power, work mode, configuration parameters and others.



Figure 2-3-9 Device information

2. Position information

This shows the device's position, satellites, the solution state, latency, PDOP and time.

Latitude:	22:58:54.59781N
Longitude:	113:21:42.38096E
Height:	43.4070m
Satellites:	0-48
Solution:	FixPos
Latency:	0.0
PDOP:	1.4
Time:	2022-04-28 07:34:03

Figure 2-3-10 Position information

3. Sky plot

This displays satellites that are visible from the device and switches for each constellation.

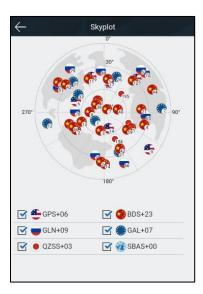


Figure 2-3-11 Sky plot

4. Satellites list

This shows the satellite tracking information.

PRN	ELE	AZI	L1	L2	L3
G3	29	47	38	42	0
G6	52	289	44	47	0
G9	10	130	33	39	0
G14	65	162	43	48	0
G17	51	12	42	43	0
G19	43	341	42	40	0
R65	33	97	37	38	0
R66	15	158	40	41	0
R72	15	48	31	40	0
R77	30	190	33	38	0
R78	53	268	48	41	0
R79	19	322	36	42	0
R81	23	297	38	42	0
R87	16	43	30	0	0
R88	37	357	40	44	0
E1	73	218	43	51	0
E7	12	88	33	39	0

Figure 2-3-12 Satellites list

2.3.3 Work mode

1. Rover

Set up the rover's data link and parameters. The rover station data link includes Internal UHF, Internal GSM, and External Radio.

\leftarrow	Rover	ок	\leftarrow	Rover	ОК
Smart Set			Smart Set		
Datalink:	Internal UHF	\checkmark	Datalink:	Internal UHF	
Channel:	22		· · ·		
Protocol:	HI-TARGET9600	\sim	Intern	al UHF	۲
			Intern	al GSM	0
			Extern	al	0

2. Base

Set up the data link and parameters of the base and get the point coordinates by averaging. The base station data link mode includes Internal UHF, Internal GSM, and External Radio.

\leftarrow	Base	ОК	← Base	ок
Avg. E	Base 🚫 Fix. Base		Avg. Base	
Save	Coords. Avg. at Fix	~	Save Coords. Avg. at Fix	
Point Name:	B414118	~	Point R054127	
Target H.:	1.9998 Vert. H.	~	Internal UHF	۲
Datalink:	External Radio	~	Internal GSM	0
Smart Base	2		External Radio	0
Message T	ype: RTCM3.2	\sim		Ū
			Protocol: HI-TARGET19200	
			Power: High	
			Message Type: RTCM3.2	

Figure 2-3-14 Base

3. Static

Set up the file name and parameters of the static collection.

Note: After ticking Static Mode, you can only cancel it in the base rover setting interface.

Figure 2-3-15 Static

2.3.4 File manager

1. Static data

Display the static data files, which support the options of Download, Delete and Format.

Note: After checking the "Static Mode", you can only uncheck the "Static Mode" in the base station mode or rover mode.

Name	Modified	Size
_9541374.GNS	05/17 02:25	100.23K
_9541373.GNS	05/17 02:24	276.06K
_9541372.GNS	05/17 02:22	319.64K
_9541371.GNS	05/17 02:20	352.85K
_9541370.GNS	05/17 02:17	357.68K
_9541013.GNS	04/11 17:52	5.52M
_9541012.GNS	04/11 12:30	12.59M
_9541011.GNS	04/11 10:55	6.43M

Figure 2-3-16 Static data

2.3.5 Firmware

1. Upgrade

Display specific device version information. Click Select, choose the upgrade package and then click Start. The receiver will automatically detect and upgrade the firmware.

\leftarrow	Upgrade
Host Verison:	V2.4.7
System Version	: V1.7.1
Radio Type:	M10_TR4602_B
Radio Version:	v1.2.0
Net Version:	SC20R09_Beta1212
INS Version:	4.3.0.0
File Name:	
Туре:	
Sele	ct Start

Figure 2-3-17 Upgrade

2. Restore

You can restore the system to its state after the last firmware upgrade.

Figure 2-3-18 Restore

2.3.6 System 1. Constellation

Switches of the satellite tracking.

Figure 2-3-19 Constellation

2. Radio

You can select the radio modulation protocol from HI-TARGET19200, HI-TARGET9600, TRIMTALK450S, TRIMTALK III, SATEL-3AS, SOUTH19200, SOUTH9600, CHC19200, CHC9600, TRANSEOT.

	Radio	ок
Protocol	HI-TARGET9600	~
СН	Frequency(MHz)	
100	466.825000	
101	463.125000	
102	464.125000	
103	465.125000	
104	466.125000	
105	463.625000	
106	464.625000	
107	465.625000	
108	466.625000	
109	463.325000	
110	464.325000	

Figure 2-3-20 Radio

3. Registration

Display the registration information of the receiver. You can select the registration type, and then enter the corresponding code to register online.

<u>.</u>	Registration	ОК
Expiration:	2022-06-15(Host)	
Expiration:	2010-01-01((Warranty Extension))	(
Expiration:	2000-01-01(RTK XTRa)	
Registratior	Type: Host	~
Host Code:	24 bits Registration Code	
	7	

Figure 2-3-21 Registration

4. Reset

Reset the motherboard.

Figure 2-3-22 Reset

5. Others

You can set the switches of the Store RINEX Data and Check Base Position, select the RINEX version, and adjust the voice volume of the receiver.

Store RINEX Data Check Base Position	0
Check Base Position	
RINEX Version: 3.02	~
Time Zone: (UTC+8:00)Beijin	g ~
Voice: Default	~
Volume: 100	

Figure 2-3-23 Others

2.3.7 Coordinate System

1. Projection

Configure planar projection parameters, such as projection model, central meridian, and scale factor.

\leftarrow	projection	∣ок
projection:	Guass-3	\sim
Origin Longitude:	114:00:00.00000E	*
False Northing(m):	0.0000	
False Easthing(m):	500000.0000	
Projection Height(m):	0.0000	
Lat. Of False Origin:	00:00:00.00000N	
Scale Factor:	1.0000	
Zone+		
X->North		
Y->East		

Figure 2-3-24 Projection

2. Datum

Configure the geodetic coordinate system of the source and target ellipsoids, and optionally the transformation model of both.

	Datum	ОК
Source Ellipsoid:	WGS 1984	~
a(m):	6378137	
1/f:	298.2572236	
Local Ellipsoid:	WGS 1984	~
a(m):	6378137	
1/f:	298.2572236	
Model:	None	~

Figure 2-3-25 Datum

3. DAM File

Import and export coordinate system configuration parameters in the format of the dam that can be linked to the controller Satsurv's coordinate system.

\leftarrow	DA	M file	ЮК
	Name	Modified	Size
	xport Save	Importi	
	Jave	Delett	

Figure 2-3-26 DAM File

2.4 Static survey

The static survey is a kind of positioning survey, which is mainly used to establish various control networks.

2.4.1 Static settings

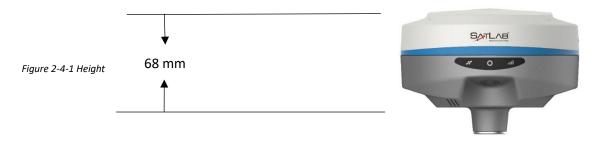
There are two ways to set up the device to work in the static mode:

1. Satsurv software – static interface – to set up the static or temporary static mode.

2. Web interface – work mode – to set up the static or temporary static mode.

Users can download the static data file to the computer, if necessary, and then use the static post-processing software (HBC data processing software package) to process the data.

2.4.2 Static data collection steps


1. Set up the receiver on a control point with a tripod, making sure the tripod is strictly centered and leveled. The benchmark must be installed.

2. Measure the slant height of the receiver three times in three directions, ensuring that the difference of each measurement is less than 3mm, and then take the average value as the final height. The slant height of the receiver is measured from the center of the measuring point to the upper part of the top of the benchmark.

3. Record the point name, S/N, receiver height and beginning time.

4. Press the power button to power on and set up the static collecting mode.

- 5. Turn off the receiver after the static data is collected and record the turn-off time.
- 6. Download and process the static collection data.

Notice: Don't move the tripod or change the collecting set while the receiver is collecting data.

2.4.3 Static Data Download

1. Download by USB cable

Connect the receiver to a computer with the Type-C USB cable and copy the static data to the computer. The static data is in the GNSS folder of the static drive.

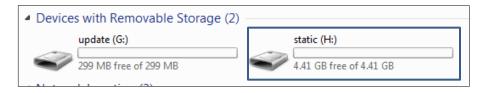


Figure 2-4-2 Static Drive

Computer 🕨 stati	c (H:)	•		-	Search sta	
File Edit View Tools Help						
Organize Share with					•	0
⊿ 🔆 Favorites	-	Name		Date modified	Туре	
🧮 Desktop		퉬 gnss		17/06/2021 00:02	File folder	
🐌 Downloads	≡	퉬 log		12/09/2019 10:17	File folder	
🔚 Recent Places		퉬 rinex		12/09/2019 10:17	File folder	
		퉬 tmp		16/06/2021 02:11	File folder	
4 ᇘ Libraries						
Documents						
🖻 🍙 Music						
▷ 📄 Pictures						
Videos						
	T (III			F
4 items						
Remove link from favorites.						ы

Figure 2-4-3 Static Drive

2. Download in the web management system

The Wi-Fi name of the receiver is its S/N. You can connect it to a controller or phone (the default password is: 12345678) and then input the IP address 192.168.20.1 into the browser to log into the WEB management system. Then, open the file manager interface and select the static file that needs to be exported. Click Download and the file can be downloaded to the controller or phone.

The default save path of the static data to be downloaded from the website is device internal storage > MyFavorite. You can customize the save path according to your needs.

Name	Modified	Size	FILES ON DOWNLOADS	≣
_9541377.GNS	05/17 03:14	275.27K	MyFavorite	
_9541377.220	05/17 03:14	865.89K		
_9541377.22p	05/17 03:12	OB		
_9541376.GNS	05/17 03:12	85.74K	1	
_9541376.220	05/17 03:12	296.79K		
_9541376.22p	05/17 03:12	OB		
_9541375.GNS	05/17 03:12	2.33M	Queued	
_9541375.220	05/17 03:12	6.98M		
_9541375.22p	05/17 03:04	54.59K		
_9541374.GNS	05/17 02:25	100.23K		

Figure 2-4-4

2.5 Tilt Survey

2.5.1 Calibration-free Tilt Survey

Connect the receiver in the Satsurv software and open the Tilt Survey in the option at Survey \rightarrow Surveying Configure \rightarrow Data interface. Click the Tilt Survey icon and follow the prompt on the Satsurv interface to finish the initialization.

← Display C	Data Stake	÷			
Physical Record Button	Single Reco	rd >	ext		08:08:19.527
Physical Shortcut Button	Defa	ult >			
Tilt Survey					
Point Info Dialog		•	Til	Survey Initializa	tion
Auto Start Average		•	RTK Fix	Survey Initializa	
Auto Store After Average			Shake R		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Store Average Points				- S	
Allow Same PtName		•			/ @
PtName Increasing by	1.000000		≈ 8		8 ×
Mileage Increasing by	1000.0000				
No Fixed Prompt in(s)	60				<u>152.17m</u>
Figure 2	-5-1 Tilt Survey		Figu	ıre 2-5-2 Sha	ike

Shake the receiver back and forth	(once every second	d) for initialization until Sha	ike is marked with 🗏

When all of the initialization items are ticked, the receiver prompts "Tilt compensation started" and the tilt survey icon becomes illuminated. This means that the tilt survey initialization is now complete and you can perform the tilt survey on the receiver.

Notice: Don't move the tripod or change the collecting set while the receiver is collecting data.

1. Make sure the pole height is consistent with the set pole height before the tilt survey.

2. When turning on the Tilt Survey switch, you will need to complete the initialization operation before normal use.

3. To meet most users' operational needs, the maximum measurement angle of the tilt survey is 70°.

4. To ensure measurement accuracy, do not turn the device quickly during the measurement process.

5. Data quality is not as good in an occluded environment. If accuracy requirements are high, please try to use this function in an open environment.

6. When you enter the tilt survey for the first time every 7 days, you need to complete the static calibration according to the prompts you receive. Let the device stand for about 10 seconds to complete this.

2.6 Firmware Upgrade

You can upgrade the firmware of the receiver, motherboard and module by using a USB cable, the web management system or online remotely.

2.6.1 Upgrade by USB Cable

Steps to using a USB cable in order to upgrade the firmware:

1. Turn on the receiver and connect it to a computer with the cable attached. This will show the updated drive in the receiver.

2. Copy the firmware (which can be downloaded from our official website or the technical team) to the receivers update drive. Disconnect the computer and restart the receiver, which automatically recognizes the firmware and starts the firmware upgrade process.

3. There will be different prompt voices for the success or failure of the upgrade. If it fails, please contact our technical team.

Devices with Removable Storage (2))
update (G:)	static (H:)
299 MB free of 299 MB	4.41 GB free of 4.41 GB

Figure 2-6-1 Update Drive.

2.6.2 Upgrade by Using the Web Management System

Copy the firmware to the controller or phone and use Wi-Fi to connect it to the receiver. The name of the Wi-Fi is the device's S/N. Then, input 192.168.20.1 to log in, click Firmware upgrade - Select - File to choose the firmware, and then click start to transfer the new firmware version.

Notice:

1. When the download fails, it will resume downloading if the network recovers within two

minutes; otherwise, it will exit the firmware upgrade detection.

2. It will not forcibly power off during the upgrade. If the power is forcibly cut off, the instrument may be damaged and become abnormal.

2.7 AR Stake

SL7 supports AR stakeout function. The iHand55 controller and the software Satsurv V3.0.2 or later versions are required.

The AR stakeout scene is defined as when the stakeout point is approximately 3m from the receiver, the camera of the receiver is called, and the precise position of the stakeout point is displayed in real time through the controller.

2.7.1 AR Stake Instructions

1. Device Preparation

Preparation before AR stakeout:

(1) Use the iHand55 controller to connect the SL7 via WIFI;

- (2) The receiver has entered the tilt survey mode;
- (3) The solution state is fixed solution.
- 2. Stakeout Process

After entering the point stakeout interface:

- (1) Input the stakeout point;
- (2) Click the AR stakeout button 🚱;
- (3) Complete the prompts for the stakeout;
- (4) The stakeout is successful.

Click the AR stakeout button, when the distance from the stakeout point is > 3m, use the control AR stakeout (control navigation); if the distance from the stakeout point is less than or equal to 3m, switch to the AR stakeout (receiver navigation).

Figure 2-8-1 Control Navigation

Figure 2-8-2 Receiver Navigation

For detailed steps, please refer to 'Satsurv Software User Manual' - Point Stakeout (AR Stakeout).

Chapter 3

Technical Specification

This chapter contains:

-Technical Specification

3.1 Technical Parameters

Table 3-1-1 Technical Parameters

Configuration		Detailed Indicators		
	Channels	1408		
		BDS: B1I, B2I, B3I, B1C, B2a, B2b*		
		GPS: L1C/A, L1C, L2P(Y), L2C, L5		
	Satellite signals are	GLONASS: L1, L2		
	tracked	GALILEO: E1, E5a, E5b, E6*		
	simultaneously[1]	QZSS: L1, L2, L5, L6*		
GNSS		IRNSS: L5*		
configuration		SBAS: L1C/A, L5		
	Output format	ASCII: NMEA-0183, Binary data		
	Positioning output	1~20Hz		
	Static data format	GNS and RINEX		
	Message type	RTCM2.X, RTCM3.X		
	Network mode	VRS, FKP, MAC;		
		Supports NTRIP protocol		
System	Operating system	Linux system		
configuration	Data storage	8G internal storage;		
<u><u></u></u>		Supports automatic cyclic storage of static data		
		Horizontal: ± (8+1×10 ⁻⁶ D) mm		
	RTK position precision	(D is the distance between measurement points)		
		Vertical: ± (15+1×10 ⁻⁶ D) mm		
Accuracy and		(D is the distance between measurement points)		
Accuracy and		Horizontal: ± (2.5+0.5×10 ⁻⁶ D) mm		
reliability[2]	Static measurement	(D is the distance between measurement points)		
	precision	Vertical: ± (5+0.5×10 ⁻⁶ D) mm		
		(D is the distance between measurement points)		
		Horizontal: ± 0.25m+1ppm		

	DGPS position	Vertical: + 0.50m+1ppm	
	precision	Vertical: ± 0.50m+1ppm	
	SBAS position precision	0.5m	
	Tilt survey precision[3]	Less than 8 mm $+0.7$ mm $/^{\circ}$ tilt (2.5cm accuracy in the inclination of	
		60°)	
	AR stake precision	Typical accuracy: 2cm	
	AR measurement	2cm ~ 4cm	
	precision		
	Initialization time	2-10s	
	Initialization reliability	>99.99%	
	Breakpoint continuity	Provides RTK measurements even with differential signal	
	test	interruptions	
	Pixel	Professional dual HD cameras: 2MP & 5MP	
Camera	5	Support live view stakeout, image measurement, working	
	Function	distance 2~15m	
	I/O ports	USB type C interface, SMA interface.	
	Cellular Mobile	Full band support for cellular mobile network	
		LTE FDD:B1/B3/B5/B7/B8/B20 LTETDD:B38/B40/B41	
		WCDMA:B1/B5/B8	
		GSM:850/900/1800/1900MHz 802.11 b/g access point and client mode for WiFi hotspot	
Data	Wi-Fi	service	
communication	Bluetooth	Bluetooth [®] 4.0/2.1+EDR, 2.4GHz	
		Power: 0.5W/1W/2W (adjustable)	
	Internal UHF	Frequency: 410MHz~470MHz	
		Protocol: HI-TARGET, TRIMTALK450S, TRIMMARK III,	
		TRANSEOT, SATEL, CHC, SOUTH	
		Channels: in total: 116, 16 configurable	
Sensors	Tilt survey	Built-in high-precision inertial guidance, automatic attitude	
		compensation	

User interface	Button	Power button*1		
User interface	LED prompt light	3 LED lights: satellite light, data light, power button		
Functional	Advanced features	NFC flash connection, WebUI interaction, firmware upgrade by U disk		
applications	Intelligent application	Intelligent voice		
	Remote service	Message push, online upgrade		
	Host battery	High-capacity lithium battery 6900mAh.		
		Working time longer than 15 hours ^[4]		
	External power supply	USB 15W charging		
Physical	Size	Φ 130mm×79mm		
	Weight	≤0.97kg		
	Power consumption	2.6 W		
	Material	The housing is made of magnesium alloy		
	Water/dustproof	IP68		
	Drop test	Resist natural fall from a 2-meters-high measuring rod		
Environment	Relative humidity	100% non-condensing		
	Operation temperature	-45°C ~ +75°C		
	Storage temperature	-55°C ~ +85°C		

Notice:

1. BDS B2b, GALILEO E6, QZSS L6, and IRNSS L5 are available through firmware upgrades.

2. The measurement accuracy, precision, reliability and initialization time depend on various factors, including tilt angle, number of satellites, geometric distribution, observation time, atmospheric conditions and multi-path validation. The data is derived under normal conditions.

3. Irregular operations such as rapid rotation and high-intensity vibration may affect the inertial guidance accuracy.

4. The battery operating time is related to the operating environment, operating temperature and battery life.

Chapter 4

Accessories and Interface

This chapter contains:

- Data cable
- Antenna
- Battery & charger

4.1 Data cable

Type-C cable: Used to connect the receiver to a PC for upgrading firmware and downloading static data.

Figure 4-1-1 Type-C cable

4.2 Antenna

The UHF radio antenna is used in the Internal UHF mode.

Figure 4-2-1 Radio Antenna

4.3 Battery & charger

1. Battery: The receiver has a built-in 6900mAh/7.2V battery.

Notice : If the battery needs to be stored for a long time, it should be charged to about 70% and then placed in a dry, low-temperature environment. It is recommended that you charge and discharge the battery every 3 months. If you do not have the conditions that are needed for charging and discharging, take out the battery after 3 months and charge it to about 70% before storing it once more.

2. Charger: To charge the receiver, use the standard charger. When it is in charge, the power button light will turn red.

Figure 4-3-1 Cable and Charge

Notice: Please use this product's standard charger to charge the receiver. We will not be responsible for any accidents that occur during the charging process or any damage to the instrument if you use other chargers instead.